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Organic chemists have long been fascinated by the mitomy
cins. ',2 The novel structure of these compounds is clearly a 
contributing factor. Emerging descriptions of mechanisms for 
their bioactivation3,4 and increasingly detailed insights into their 
interactions with nucleic acid receptors5 continue to fuel interest 
in the field. The recent isolation of mitomycin variants from 
natural sources with synthetically challenging structural features6,7 

has served to promote new research in this series. Finally, the 
fact that mitomycin C is a clinically useful antineoplastic drug8 

provides incentives at the pharmaceutical level for fresh departures. 
Herein we disclose a new synthetic strategy which has potential 
for reaching either the mitomycins, the recently discovered FR-
900482 (I),9 or congeners of these drugs. 
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(a) TMSCH2MgCl, Ei20/PhH. 
(b) 0.01M. in THF, Av(254nm). 

We started with consideration of an intramolecular cyclo-
addition of a dienyl nitroso system (see generalized system 2).10 

In principle, such a process could lead to a bridged oxazine de
rivative (cf. 3) or to a fused version (cf. 4). The nature of the 
outcome would, presumably, be strongly influenced by the nature 
of the diene and by the character and length of the T "tether"." 

OR 

Oft 
3 bridged mode 

OR 

2 \j\ = tether 4 fused mode 

In order to address such questions, it would be necessary to 
develop a route to reach 2. Our solution contemplated unveiling 
the nitroso function with the diene already present via a photo-
chemically driven redox reaction of an o-nitrobenzyl alcohol 
prototype.12 In our opening investigation of this possibility, we 
examined a system with a minimum C1 tether on the grounds that 
candidate substrates of this type could be assembled rapidly. 
Below we demonstrate the feasibility of the photochemical redox 
route to produce nitroso dienes, and the rather interesting chem
istry which ensues therefrom. 

Reaction of o-nitrobenzaldehyde with 1-methoxy-l-lithio-
butadiene13 generates carbinol 5 (Scheme I). Photolysis of 5 
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afforded a 75% yield of 7. As was envisioned in advance, the 
photolytic redox reaction of 5 had apparently given rise to 6, which 
in a 2 + 4 cycloaddition (presumably a "dark" step)14 yielded the 
fused oxazine 7. The effects of incorporating aromatic substituents 
of relevance to the synthesis of 1 were explored. Reaction of 
methyl 4-formyl-3-methoxybenzoate15 with the butadienyl anion 
afforded a 56% yield of 8. Photolysis of 8, as above, afforded a 
60% yield of 9, the structure of which was proven by crystallo
graphic means. 

We next studied the possibility of incorporating "pre-mitomycin" 
functionality on the aromatic ring. Accordingly, the addition of 
the butadienyl anion to 4-methyl-6-nitro-2,3,5-trimethoxybenz-
aldehyde15 was carried out. The product, 10, obtained in 80% 
yield, was photolyzed as above. In this case there was directly 
obtained a 45% yield of the pyrroloindoxyl derivative 12. That 
the expected 11 is at least a permissible intermediate in this 
amazing transformation was shown by its isolation in low yield 
from the same reaction and its conversion to 12 by subsequent 
photolysis under the same conditions. The structure of 12 was 
fully corroborated by a crystallographic determination of its de
rived acetate 13.16 

We were intrigued by the difference in photochemical behavior 
in the two series. Thus, 7 and 9, each produced from photolysis 
reactions, are apparently photostable under the conditions of their 
formation. In contrast, 11 suffers photochemically induced 
conversion to 12. It seemed possible that the confluence of highly 
electron donating substituents in the aromatic nucleus of 11 favors 
its photoconversion to 12. While maintaining the aromatic sub
stitution pattern of the pre-FR-900482 series, we examined the 
consequences of removing the electron-withdrawing "keto" group17 

of 9. The hope was that the resultant product would be more 
electronically similar to 11. In the event, compound 9 was 
smoothly (80%) converted to 14 through the agency of 
TMSCH2MgCl.18 Interestingly, photolysis of 14 produced an 
80% yield of 15 (Scheme II). 

Our experiments have not thus far been directed to providing 
new insights as to the precise nature of the transformation of 11 
and 14 to 12 and 15, respectively. Certainly, the sequence of 
photocleavage of an NO bond, C -— N hydrogen migration, and 
cyclization is not without precedent." In summary, a highly 
concise entry to intermediates closely related to the mitomycins20 

and FR-900482 has been developed. 
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The advent of a simple synthesis for generating macroscopic 
amounts of the fullerenes,1 C60 and C70, has spawned an intensive 
effort to study the physical and chemical properties of this new 
state of carbon.2 One of the most intriguing aspects of the 
fullerenes is their topography, which, as exemplified by the "soccer 
ball" structure of buckminsterfullerene (C60), has an internal 
volume and an external surface.3 Incorporation of elements,4" 
particularly transition metals,4b'° and perhaps even small com
pounds, inside the carbon cage may lead to useful new materials 
with unique properties. Alternatively, the fullerenes may prove 
to be highly versatile ligands for the generation of unusual or-
ganometallic complexes. The aromatic nature of the fullerenes, 
together with their five- and six-membered-ring makeup and low 
reduction potentials, suggests that they may function like cyclo-
pentadienyl or benzene ligands. Exemplifying the feasibility of 
this approach is the recent report of a cyclopentadienyl-ruthe-
nium-C60 compound.5 

Expanding the potential utility of the fullerenes as ligands, we 
felt that a Ws-C60 metal ion complex should be formed in the gas 
phase in analogy to the bis-benzene or metallocene complexes. 
This idea was realized with the formation of the bis complex 
Ni(C6Q)2

+, which was observed in a Fourier transform mass 
spectrometer to arise at longer trapping times in the presence of 
a background of C60 as a result of direct attachment of C60 to 
NiC60

+.6 Figure 1 shows selected mass spectra from the multistep 
(in situ) synthesis7 of the bis complex, which entailed (1) laser 
desorption of Ni+,8 (2) isolation of the 58Ni+ isotope by double 
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